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Abstract

We present TA-LLaVA, an instruction-tuned multimodal
large language model (MLLM) designed to be efficient and
scalable for general vision-language tasks. TA-LLaVA in-
troduces a novel cross-attention adapter design that effec-
tively reduces the number of visual prefix tokens from 576
to 32, significantly reducing inference costs by over 50%
compared to LLaVA- 1.5, while maintaining strong task per-
formance. Our key innovation lies in instruction-aware
visual feature pooling, where visual information extrac-
tion is conditioned on the provided instructions, enabling
the model to keep relevant visual features efficiently. De-
spite using a smaller language model and training dataset,
TA-LLaVA achieves competitive results, outperforming In-
structBLIP on tasks like MME and Science QA. However,
we observe limitations such as hallucinations and reduced
accuracy on benchmarks requiring precise perception (e.g.,
POPE), which we attribute to the limited prefix token ca-
pacity and insufficient training data. Our future direction
includes adding support for multi-image an video inputs
and integrating it with more powerful casual LLMs. This
work demonstrate a promising step toward efficient and
instruction-aware multimodal LLMs. Our code is available
at https://github.com/ToviTu/TA-LLaVA.

1. Introduction

Recent advancements in large language models (LLMs)
and vision-language models (VLMs) have enabled the de-
velopment of self-supervised methods to learn robust joint
semantic spaces for text and vision. These advancements
have led to versatile multimodal large language models
(MLLMs) that excel in various vision-language tasks, such
as visual question answering and visual reasoning [2, 19,

,26]. The core objective of this line of research is to
extend LLMs to process visual inputs and generate tex-
tual responses effectively. Recently, there has been grow-
ing interest in developing practical multimodal assistants
through a technique known as visual instruction tuning
[8,9,20,21]. This method extends the language-only super-
vised paradigm [24,32] by incorporating multimodal inputs.
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A dual-phase training paradigm, consisting of multimodal
pre-training and supervised fine-tuning has proven to be a
simple yet effective way to enhance zero-shot question an-
swering performance in MLLMs using natural instructions.

In prefix multimodal LLM, such as LLava [21], im-
age embeddings, treated as soft prompts, are prepended to
standard text embeddings, enabling the LLM backbone to
process multimodal inputs. Unlike end-to-end training of
multimodal LLMs from scratch, adapting pretrained check-
points substantially reduces pretraining costs while facili-
tating efficient knowledge transfer to vision-language tasks.
However, a significant challenge remains: high compu-
tational cost when processing images. Specifically, the
number of visual tokens increases drastically with high-
resolution images, exacerbated by the quadratic time com-
plexity of the attention mechanism. Moreover, recent stud-
ies highlight that image resolution critically impacts visual
performance, suggesting an inevitable increase in computa-
tional burden for future MLLMs [14,20]. A common ap-
proach to address this issue is the use of bottleneck mech-
anisms to down-sample visual signals. While instruction-
aware compression mitigates information loss, it often re-
quires additional modules trained separately [9].

In this work, we aim to enhance the training and in-
ference efficiency of multimodal LLMs by introducing
an instruction-aware prefix without extensive instruction-
image pretraining. We propose a novel architecture and
training method that leverages publicly available datasets
containing approximately 1 million samples. Our design
enables fast zero-shot generation using a relatively small
language model.

Unlike previous designs that primarily focus on visual
properties, such as preserving semantic locality [4], our ap-
proach incorporates language-aware factors into the visual
feature pooling process at minimal additional cost. This
strategy filters relevant visual information before passing it
to the language model. Our method is inspired by the find-
ings of [9], which demonstrates that not all image informa-
tion is essential for answering visual questions; therefore,
selectively discarding certain visual inputs is a viable opti-
mization. The key advantage of our approach lies in sig-
nificantly reducing computational cost by limiting the size
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of visual inputs attended to by the language model while
preserving sufficient information for accurate responses.

We introduce TA-LLaVA, a prefix multimodal LLM sim-
ilar to the LLaVA family, which uses a visual prefix and
achieves image-conditioned text generation. TA-LLaVA is
trained on a relatively small vision-language dataset but dis-
tinguishes itself through instruction-aware (TA) visual fea-
ture pooling. Specifically, we reduce the number of prefix
tokens by applying a modified cross-attention mechanism
that alternates between extracting textual and visual fea-
tures. Additionally, we employ a curriculum learning tech-
nique to gradually increase the difficulty of training tasks,
enabling steady model improvement.

To validate our approach, we follow the standard zero-
shot evaluation protocol and benchmark TA-LLaVA on a
suite of public vision-language datasets unseen during train-
ing. Empirical results demonstrate that TA-LLaVA achieves
strong performance relative to models requiring signifi-
cantly more computational resources, memory, and time
during generation.

2. Related Work

Multimodal Large Language Models. The dominant
approach to constructing MLLMs integrates a visual en-
coder with a pretrained large language model (LLM). Since
mainstream LLMs adopt the Transformer architecture, the
CLIP-series models [26], which employ Vision Trans-
former (ViT) layers, are particularly well-suited for this
integration. CLIP models represent image inputs as flat-
tened sequences of patch tokens, naturally aligning with
the Transformer structure. Additionally, their unsupervised
learning paradigm demonstrates robust cross-domain gen-
eralization. Prior studies have shown that freezing the
visual encoder during MLLM training is often sufficient
to achieve competitive performance on downstream tasks.
Various adapter modules have been explored to project the
activations from the visual encoder into the LLM embed-
ding space. VILA [19], Palm-E [11], and LLaVA [21]
choose a simple linear layer or MLP, whereas Blip-2 [16]
and Flamingo [2] use cross-attention-based module modi-
fied to learn better vision-language representation. Recent
studies on pre-training MLLMs highlight that image reso-
lution plays a critical role in downstream performance, of-
ten surpassing the impact of model size [14,20,23]. How-
ever, the performance gain is at the cost of inference speed.
For instance, increasing the image resolution from CLIP-
ViT-L/14@224 to CLIP-ViT-L/14 @336 effectively doubles
the number of visual tokens, requiring the base LLM to
process significantly more tokens. Given the quadratic
time complexity of self-attention with respect to the to-
ken count, several bottleneck mechanisms have been intro-
duced to condense visual representations and control infer-
ence costs [ 14, 16]. However, these methods face a trade-off

between efficiency and performance, as compressing visual
signals may result in information loss. Determining an opti-
mal bottleneck size requires extensive empirical experimen-
tation. To address this challenge, we propose introducing
textual signals into the visual projection module, guiding
the extraction of relevant visual information. By aligning
the visual feature pooling process with textual instructions,
we aim to preserve only the most critical visual inputs for
processing, balancing efficiency and effectiveness.

Visual Instruction Tuning. Motivated the success of In-
structGPT [25], and FLAN [32] in improving the zero-
shot generalization of LLMs through supervised fine-tuning
of conversation data, where the model’s response is con-
ditioned on human instructions, visual instruction tuning
extends this learning paradigm to MLLMs by compos-
ing image-centric fine-tuning datasets. While LLaVA [21]
constructs such datasets by prompting language-only GPT-
4V, PoliteFlamingo [5] trains a rewriter model to annotate
public vision-language datasets with human-preferred re-
sponses. Some MLLMs, such as Kosmos-1 [15] and Gem-
ini [27], are inherently built as multimodal models from
scratch using in-house datasets. However, the more widely
adopted approach is to adapt a pretrained language-only
model into a multimodal one. This typically involves align-
ing the text and image input spaces through multimodal pre-
training, followed by end-to-end visual instruction tuning.
Notably, the LLaVA series [20] achieves strong zero-shot
performance with impressive training efficiency, requiring
only 1 million training samples. Another line of work fo-
cuses on improving the inferencing efficiency to allow pro-
longed visual inputs (e.g. video) or lower generation costs.
InstructBLIP [9] and LLaMA-VID [18] inject instruction
information into visual feature pooling to make the ex-
traction process instruction-aware. Their empirical results
demonstrate that this approach significantly reduces the re-
quired visual prefix tokens. However, both works involve
an additional module and a separate training phase to align
text instructions to visual information, and neither fails to
reuse the text embeddings outputted by the base LLM. In
contrast, our proposed method introduces a compact design
that merges instruction-aware feature pooling directly into
the base model’s forward pass. Inspired by the architecture
of Flamingo [2], our design eliminates the need for sepa-
rate alignment phases, achieving improved efficiency with-
out compromising performance. [2].

3. Method

In this section, we detail our proposed modeling and
training approach. For completeness, we begin with a brief
review of the prefix multimodal language modeling method,
which is prominently used in LLaVA [21].
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Figure 1. An overview of our multimodal LLM’s architecture. The
components of the model can be summarized into a vision encoder,
a multimodal adapter, and a LLM backbone. Our work is design-
ing a novel adapter that can freely attend to the image and the
instruction. This model only allows single-image, in addition to
text, inputs, and text-only outputs.

Prefix language modeling was initially introduced as an
efficient fine-tuning method for causal language models
(CLMs). The key idea is to condition the model on a set
of continuous prefix tokens that influence its behavior with-
out participating in next-token prediction or contributing to
the loss computation during training.

LLaVA [21] extends this learning paradigm by using to-
kenized image inputs V' as a prefix concatenated with the
regular text tokens X. The language model is then trained
to process the combined input and attend to the visual sig-
nal appropriately. For instruction tuning, the input text se-
quence X is typically divided into two parts: instruction and
desired response X = [X;nstruct, Xresponse]- Since the in-
struction is provided during inference, both visual inputs
and the instruction are used as the prefix, and the model is
trained only to generate the response. Mathematically, for a
response of length 7', the probability of the answer is com-
puted as:

T
= H Do (xt“/a Xinstu Xresp,O:tfl)

t=1

p(Xresp“/a Xinst)

where X4, 0.+ denote the previously generated response
token up until time <.

During inference, the model generates the response to-
kens by repeatedly predicting a probability distribution over
the language model’s vocabulary. In our evaluation, we em-
ploy greedy decoding, where at each time step, the token
with the highest probability is selected:

Ty = arg mea&(p&(ﬂM Xinst, Xresp,O:t—l)
xr

where V' is the model’s vocabulary. This simple yet effec-
tive strategy ensures deterministic generation and is widely
adopted in language model evaluations.
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Figure 2. Detailed diagram about the proposed multimodal LLM.
Learnable tokens are used as the memory by the adapter to hold
relevant instruction and visual information. They are then con-
catenated to the text prompt for causal text generation. The adapter
alternates between pooling image and instruction features.

3.2. Instruction-Aware Visual Feature

Algorithm 1 Our Proposed Adapter

1: procedure CONTEXTAWAREATTENTION(V, X,Y)
2 Y, X] < [Y, X] + Sel f Attention([Y, X])

3 [V X]« [V, X]+ FFN([Y, X])

4: Initialize [X;nstruct, Xresponse] < X

5: if current layer index % k& == O then

6 Y <Y+ XAttntert(q = Y7 U= Xinstruct)
7 Y <Y+ FFN(Y)

8
9

else if current layer index % k == 1 then
: Y « X Attnyision(¢g =Y, v =V)
10: Y« Y+ FFN(Y)
11: end if

12: return Y, X
13: end procedure

Our proposed model adheres to the established MLLM
paradigm, where visual features are attached as prefix to-
kens to the text embeddings. However, instead of aligning
the visual features directly to the input layer of the LLM, we
allow the base LLM to interact with them at certain LM lay-
ers. To enable instruction-aware visual feature extraction,
previous approaches often employ an independent cross-



attention model, trained separately with a distinct objective
and often on a different dataset. In contrast, we reuse the
language model backbone as the text encoder, alternating
between extracting information from the language tokens
and the visual tokens. This is achieved using a novel adapter
design based on the cross-attention mechanism. The learn-
able prefix tokens serve as a "memory,” storing summarized
relevant features from both the instruction and image inputs.
To facilitate this process, we initialize two modality-specific
adapters: one for the vision modality and one for the text
modality. To guide visual feature extraction using instruc-
tion features, the instruction feature pooling step occurs be-
fore the image feature pooling. The adapters are inserted
between the original layers of the language model, enabling
them to update the learnable prefix tokens iteratively. The
architecture design resembles that of Flamingo [2]. How-
ever, a crucial difference is that the text embeddings in the
language model can only attend to the prefix tokens but not
the visual tokens.

Adapter In practice, the visual encoder’s hidden dimen-
sion often misaligns with that of the language model.
Therefore, a projector, either an MLP or a linear layer, is
used to make the visual embeddings compatible. Mathe-
matically, let the output activation of the visual encoder up-
scaled by the projector to be V' € RM*dmode and the text
embeddings be X € RN*dmodet  Ingpired by the iterative
attention mechanism, we initialized a group of fixed-size
learnable tokens Y € REXdmodel a5 the prefix such that
L << M. The prefix tokens are updated iteratively us-
ing cross-attention adapters fwattn,text and fwatten,’uision,
which process text and visual information, respectively. We
assume the input text prompts follow the structure X =
[Xinstructs Xresponse)- To make the prefix instruction-
aware, we first summarize the instruction part of the input
prompt by updating the prefix Y as follows:

}/t-&-l — fxattn,text (}/fa Xinstruct)

where Y; serves as the query, and X, provides the key and
value. Here, ¢ corresponds to the layer index in the stacked
transformer-based language model. Next, we incorporate
the visual information into the prefix tokens by applying
the vision adapter:

Y;H—2 — fzattn,vision(Y;&+1a V)

where V represents the precomputed visual tokens stored to
save computation. In each LM layer, the prefix Y occupies
the beginning of the input sequence to the LLM so that all
following tokens can freely attend to Y as in the regular
causal language model. We insert the adapters for every k
LM layer, and feature pooling repeats until the final layer of
the language model. Again, the prefix Y and the instruction

Xinstruct do not participate in the text generation and loss
calculation. A linear layer, known as the LM head, finally
predicts a probability distribution over all possible words
for each token in the output sequence.

Conditional Auto-regressive Generation The KV cache
is a widely used and efficient technique for LLM inference.
Since a causal language model generates one token at a
time, generating a complete response may require hundreds
of forward passes. Without optimization, the key-value
(KV) pairs for past tokens would be recomputed repeatedly
at each generation step. The KV cache improves efficiency
by storing the precomputed keys and values from previous
steps, enabling the newly generated tokens (queries) to at-
tend directly to these cached keys and values. Restricting
the text-aware feature pooling to user instruction is detri-
mental to efficiency because it avoids repeated updating of
the visual prefix and allows easy causal generation readily
compatible with most LLM serving frameworks. During in-
ference, only the user instruction is available as input, and
the model iteratively predicts the response conditioned on
the image and the instruction. To ensure that the instruction-
only pooling is maintained, we use an attention mask to
prevent the prefix tokens Y from attending to the response
tokens Zresponse. During response generation, the visual
prefix Y remains fixed and is not updated with newly gen-
erated tokens. Consequently, the prefix tokens Y along with
the instruction embeddings can be cached once using stan-
dard KV cache implementations. This design seamlessly
integrates with existing causal generation techniques, en-
suring efficient auto-regressive decoding without requiring
modifications to standard LLM inference pipelines.

4. Experiment

Our design of the adapter may be flexibly applied to
most causal LM. However, due to limited time and com-
puting resources, we mainly experiment with the approach
on one small language model and compared it against other
MLLMs for visual instruction tuning. We adopt the zero-
shot evaluation protocol described in [21] and report scores
on standard vision-language benchmarks.

4.1. Implementation

Dataset. This work focuses mainly on validating the ef-
ficacy of our proposed design. Therefore, we utilize the
publicly released datasets from LLava-1.5 [20], which con-
sists of a pre-training and a fine-tuning dataset. The for-
mer, LLaVA-CC3M-Pretrain-558k, contains sampled in-
stances from a large-scale dataset, LAION [29], annotated
by BLIP-2 [16]. Although not intended for instruction tun-
ing, the dataset complies with the instruction-following for-
mat with a user request and a model response. The se-
quences feature straightforward and concise descriptions of
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Figure 3. A few qualitative examples generated by our TA-LLaVA model. The model is instructed to answer vision-language questions
about the scene or to describe the scene in detail. The model demonstrates strong instruction-following abilities but suffers from halluci-
nation.
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the image. The other dataset, LLaVA-v1.5-mix665k, con-
tains training samples from three sources: GPT-generated
LLaVA-instruct-150k [2 1], public vision-language datasets,
and ShareGPT [6]. It should be noted that the ShareGPT
dataset is text-only, while others have both images and text
paragraphs. Although past studies reveal that stronger lan-
guage ability can positively benefit vision-language perfor-
mance [8, 19,20], we choose to remove the language-only
instances as their verbosity causes out-of-memory issues
during training. For the same practical reason, we discard
samples that are longer than 1024 tokens to make train-
ing feasible. The filtered instruction-tuning dataset contains
roughly 90% of the training instances. No modification is
done to the pre-training dataset. For all training instances,
we adopt a consistent, prompt template to structure the in-
put: “user:<question> model: <response>.” In particu-
lar, the token corresponding to the word “model” serves
as a special token that specifies the end of the instruction.
Though theoretically possible, our model is not trained on
multi-image or video datasets. We leave support for multi-
image inputs as a feature work.

Model. In this study, we build our proposed MLLM
from a small yet performant language model, Gemma-2-
2B [28], released by Google research. Specifically, we use
the version that has been instruction-tuned with reinforce-
ment learning from human feedback [24]. The model is
trained with the standard causal language modeling objec-
tive and contains 24 transformer layers. For the visual en-
coder, we use the CLIP-vit-1/14@336 [26] to encode im-
ages of resolution 3362 into 576 visual tokens by extracting
the activations from the last-second transformer layer. A
linear projector layer is added after the visual encoder to
upscale the visual tokens to 2048 dimensions, thus mak-
ing them compatible with the language model. 32 learn-
able prefix tokens are initialized and subsequently trained to
hold instruction and image information. Most importantly,
our cross-attention implementation is adopted from the im-
proved self-attention module in Gemma-2 [28]. Novel tech-
niques, including attention soft capping [28], grouped query
attention [ ], and rotary positional embedding [31], are ap-
plied to stabilize training and increase expressivity. In every
forward pass, we first look for the special token “model” to
identify the end of the user instruction and create an atten-
tion mask accordingly. The response part of the text prompt
is masked out to ensure that only instruction information
is used in visual feature extraction. One cross-attention
adapter is initialized for each modality and inserted after ev-
ery four LM layers. Although the adapters are used repeat-
edly, the same adapters of each modality instead of multiple
adapters of different weights are used to reduce the number
of parameters.

Training. We propose a three-phase curriculum learn-
ing schedule to progressively expose the model to tasks

of increasing difficulty. In phase one, we focus on train-
ing the model to learn an alignment between the visual
and the textual modality. With the vision encoder and the
LLM frozen, we pre-train the adapter and the projector on
LLaVA-Pretrain-558k. Captioning is relatively easy as the
semantic relationship between the image and the response is
straightforward, and instruction-aware feature extraction is
not important since an understanding of the global context
is required. In phase two, we train the model to utilize com-
plex instruction information to extract only useful visual
features. The dataset used is LLaVA-v1.5-mix665k, which
contains complex tasks such as question answering, reason-
ing, and conversation. Again, both the vision encoder and
the LLM remain frozen. This stage is considered more chal-
lenging as high-level skills are required to solve the men-
tioned tasks, and the model is forced to summarize only the
useful information in the restricted 32 prefix tokens. Lastly,
phase three focuses on fine-tuning the language model to
fully adapt it to vision-language tasks. Therefore, only the
vision encoder is frozen, but the rest of the model is fine-
tuned on the same dataset as in phase two, namely LLaVA-
v1.5-mix665k. In three training stages, we steadily train the
model to gain more and more complex skills that are useful
in tackling downstream vision-language tasks.
Hyperparameters. For all training sessions, we use the
Adam optimizer without weight decay and 81 = 0.9 and
B2 = 0.999. To stabilize training, we apply linear warm-
up, gradually increasing the learning rate during the initial
steps. The specific hyperparameters are provided in Table
1. All models are trained utilizing 8 Nvidia A6000 GPUs
and completed within 1 day. Techniques, including gradient
checkpointing and gradient accumulation, are adopted to
improve memory efficiency. Further acceleration is possible
with FlashAttention [10]. However, we fail to implement
it due to an incompatibility issue with the cross-attention
mechanism associated with the Transformers package.

4.2. Quantitative Results

We empirically evaluate the proposed architecture on
five standard benchmarks: POPE [17], VQAv2 [13], MME
[12], Science QA [22], and 2017 COCO Caption [7]. The
task types span image question answering, reasoning, OCR,
captioning, and domain knowledge testing. We compare
our method against other architectures, including LLaVA
[21], LLaVA-1.5 [20], InstructBLIP [9], and Qwen-VL [3].
We follow the zero-shot evaluation protocol: during in-
ference, no demonstration examples are provided, but the
model receives task-specific instructions. The model gen-
erates responses by greedily decoding the next token based
on the highest probability.

We summarize the performance and the size of the train-
ing dataset in Table 2. Despite the small sizes of the base
LLM and the training dataset, our final model, TA-LLaVA,



Phase Vsual Encoder Adapter LLM LR Warm-Up Batchsize # Epoch

Phase 1 Frozen Trained Frozen 1x10~3 0.03% 256 1

Phase 2  Frozen Trained Frozen 5 x107° 0.03% 128 1

Phase 3 Frozen Trained Trained 2 x 10~° 0.03% 128 1

Table 1. Hyperparameters for each training phase.

Method Sample Size | Base LLM POPE VQAv2 MME SciQA COCO-Cap
Metrics F1 Acc Acc Acc CiDER
LLaVA-7B 0.71M LLaVA-7B - 76.3 809.6 - -
LLaVA-1.5-7B 1.22M Vicuna-1.5-7B 87.3 78.5 1510.7 67.1 -
InstructBLIP 130M Vicuna-1.5-13B 87.7 - 1212.8 63.1 -
Qwen-VL-Chat 1.4B Qwen-7B - 78.2 1487.5 68.2 -
TA-LLaVA-Phase2 1.15M Gemma-2-2b-it 472 50.3 870.6 46.3 69.1
TA-LLaVA 1.15M Gemma-2-2b-it 78.9 60.5 1251.8 63.1 79.4

Table 2. TA-LLaVA’s zero-shot performance on unseen vision-language benchmarks compared with the SoOTA models. Our model attains
strong performance comparable to InstructBLIP on complex tasks while using significantly less data. The scores for the other models are

reported by [20].

attains a strong performance compared with the other SoTA
MLLMs. Particularly, it scores 1251.8 and 63.1 on MME
and Science QA, outperforming InstructBLIP. However, we
acknowledge a significant gap between TA-LLaVA and the
SoTA methods, especially in POPE and VQAv2, where
LLaVA-1.5-7B beats our method by 8.4 and 18 points. This
gap suggests that TA-LLaVA may still lag behind in funda-
mental vision capabilities.

To investigate the effect of training further, we also eval-
uate the intermediate model after Phase Two training and
compare it against the final model. We notice that the fi-
nal model significantly improves the scores by training on
the same data but with LLM unfrozen. Therefore, it seems
full fine-tuning is detrimental to both modality alignment
and knowledge transfer as both scores on simpler (POPE
and VQAV2) and more complex (MME, Science QA, and
COCO Caption) increase by a large margin. However, the
most fair comparison may be between InstructBLIP and
TA-LLaVA-Phase2, as both models have instruction-aware
feature extraction, and the base LLM is not fine-tuned ex-
plicitly. The observation that InstructBLIP has much bet-
ter performance suggests that there is still a lot of potential
for tuning the adapter, which may be undertrained. Yet, a
confounding factor remains: the InstructBLIP has a much
(6x) bigger LLM backbone, which may partially account
for the performance boost. These findings suggest that a
large-scale ablation study compares the methods in a fairer
setting, where all methods should use the same base LLM.

Thanks to the small size and the efficient prefix design,
our MLLM has a significantly lower inference cost. Fol-
lowing the inference cost analysis as in [30], assuming a se-

quence of 40 text tokens and one input image, one forward
call to the LLaVA-1.5-7B model has an estimated compu-
tation cost of 9.3 TeraFLOPS, while our TA-LLaVA only
requires 3.56 TeraFLOPS. Our method effectively cuts the
inference cost by more than 50%.

4.3. Qualitative Results

In addition to the standard benchmarks, we also qualita-
tively examine the outputs of our model. We present a few
inference samples in Figure 3. As illustrated, our model
demonstrates decent capabilities in solving a wide range of
vision-language questions. It is able to understand the user’s
instructions and recognize objects of interest as requested.
Furthermore, the model can supply additional details by ac-
cessing its internal knowledge about the world. However, a
notable problem with TA-LLaVA is hallucination. In the gi-
raffe example, the model points out that there is a person in
the background looking at the giraffe, but it is apparent that
no one is present in the scene other than the two giraffes.
Additionally, in the stop sign example, the model claims
there are ’a few cars” while there is only one car. These
observations suggest that the visual prefix fails to keep all
details in the image, although the model captures the global
context.

5. Conclusion

In this project, we present TA-LLaVA for instruction-
tuned multimodal LLM, a scalable and efficient model to
solve general vision-language tasks. The key contribu-
tion is that our novel adapter design 1) effectively reduces
the number of visual prefix tokens from 576 to 32, and



2) condition visual feature extraction on the provided in-
struction. Compared to LLaVA-1.5, TA-LLaVA reduces in-
ference costs by more than 50% while maintaining strong
performance on complex tasks. Remarkably, our model
achieves performance on par with InstructBLIP, which is
trained on datasets 100 times larger. Qualitative evalua-
tions further demonstrate that TA-LLaVA possesses strong
instruction-following abilities, comprehensive scene under-
standing, and broad world knowledge.

6. Limitation

However, a notable limitation of our model is halluci-
nation, where TA-LLaVA struggles to accurately recognize
elements within an image. This issue is particularly evi-
dent in the POPE benchmark, where the model exhibits sig-
nificantly lower accuracy. Additionally, when tasked with
image descriptions, which require both holistic and precise
perception, the model is prone to generating erroneous an-
swers. We hypothesize that the limited number of prefix
tokens (32) may cause information loss, especially in tasks
demanding richer visual details.

Furthermore, while TA-LLaVA demonstrates strong per-
formance, it still lags behind state-of-the-art models on
standard benchmarks. Addressing this gap will require
further architectural and training improvements. In future
work, we plan to extend TA-LLaVA in three key directions.
1) We aim to implement the adapter design in other causal
LLMs, such as Qwen [3] and Vicuna [33]. This will en-
able a more fair comparison against existing methods and
validate the adapter’s compatibility with mainstream LLM
backbones. 2) An exciting extension involves enabling the
model to process multi-image or even video inputs by con-
catenating sequences of visual embeddings. This requires
the collection of dedicated multi-image datasets for both
pre-training and fine-tuning stages. 3) To further improve
scalability and speed, we plan to integrate advanced tech-
niques such as FlashAttention [ 0], which can optimize the
attention mechanism for better memory and computational
efficiency.

7. Statement of Individual Contribution
7.1. Jianhong Tu

Jianhong Tu is primarily responsible for designing the
architecture and implementing the code. He developed and
deployed a training framework onto computation nodes for
large-scale training. He also contributed to the method
and related work section of the report and the presentation,
thanks to his familiarity with the field. Lastly, he plans the
empirical experimentation and specifies the procedure for
quantitative evaluation.

7.2. Erdong Chen

Erdong is responsible for both quantitative and qualita-
tive evaluation. He contributed by preparing a codebase for
automatic evaluation on five vision-language benchmarks.
He also manually tests the model’s performance using many
examples. Erdong also assisted in the model architecture
and training, as well as literature reviews and presentations.

7.3. Shuhan Zhang

Shuhan enhanced the dataset by organizing it into sub-
sections, generating example prompts, and performing us-
age analysis. Shuhan also assisted in performing evalua-
tions on the final model and creating slides for demonstra-
tion.

8. External Resources Used

The base LLM that we use as the foundation for our
multimodal LLM is accessed through the HuggingFace
platform at https://huggingface.co/google/
gemma—2-2b-1it. The final model is majorly im-
plemented using PyTorch https://pytorch.org/,
and both training and inferencing functionality rely on
API offered by the Transformers package https: //
github.com/huggingface/transformers. For
efficient modeling training, we use model sharding with
the DeepSpeed framework https://github.com/
microsoft /DeepSpeed. Finally, empirical evalua-
tion is performed on the LMMs-Eval platform https: //
github.com/EvolvingLMMs—-Lab/lmms-eval.
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