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1 Introduction

High-quality datasets are fundamental to the success of modern machine-learning approaches.
Prior studies in domains such as computer vision and natural language processing have high-
lighted the impact of carefully curated datasets, emphasizing diversity, reduced noise, and
task relevance in improving large-scale learning algorithms [1, 2, 3]. Classical active learning
methods, which assign quality scores to data points and selectively include the best data, have
consistently demonstrated performance gains [4].

In natural language processing (NLP), particularly in the training of Large Language Models
(LLMs), quantifying dataset diversity and data quality has proven critical for developing effec-
tive AI assistants. For example, [5] and [6] show that constructing user-assistant conversation
datasets spanning diverse disciplines and task categories enhances LLMs’ instruction-following
abilities through Instruction Tuning (IT). With IT datasets either annotated by human labor or
synthesized by models, fine-tuning on a small subset of high-quality data is sufficient to achieve
comparable or even superior performance to full-dataset training [7]. However, excessive fine-
tuning on synthetic data risks catastrophic forgetting or model collapse [8], underscoring the
need for automated methods to select moderately sized, high-quality subsets for instruction
tuning.

As IT datasets grow through large-scale crowdsourcing and machine annotation, efficient
subset selection becomes increasingly challenging. Existing manual or algorithmic approaches
often suffer from poor scalability or high computational complexity, limiting their practicality.
Concurrently, a reinforcement learning-driven approach is proposed to learn dataset selection
strategy, but its success is limited to the relatively simple problem of supervised classification
[9].

Motivated by the restrictions above, this research proposes a novel RL-based dataset sub-
section selection method by formulating the problem as a simple Markov Decision Process and
leveraging well-established policy gradient methods. Our approach allows subset selection of
arbitrary size by learning a diversity score for each datum while achieving similar or better
performance as compared to a theory-driven greedy method. Though motivated by instruction
tuning, this method is readily applicable to other domains as long as a few basic assump-
tions are met. We demonstrate its effectiveness and efficiency on image and text datasets and
validate its applicability in fine-tuning LLM.
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2 Related Works

Data Valuation with RL [9] proposes a novel subset selection framework with the rein-
forcement learning paradigm by estimating a quality score independently for every datum in
the training split, which assesses the datum’s impact on a classifier’s accuracy on the test split.
The method, or DVRL, utilizes a usual deep classifier and instantiates a data value estima-
tor as the agent, which is a multilayer perception that takes in the data point and outputs a
scalar score. During training, mini-batches are sampled from the training set, and the clas-
sifier weights are updated via gradient steps. The reward signal is derived from the negative
difference between the current classifier’s loss and the moving-average loss on a reserved val-
idation set. The data value estimator is optimized using a modified REINFORCE algorithm
[10]. During inference, the value estimator assigns a quality score for every datum, and top-k
sampling selects the best subset from the sorted dataset where k is the size constraint.

Although this method is successful in robust classification, its online learning strategy is
not suitable for large-scale LLM training: 1) continual training of an LLM disrupts reward
assignment, as its zero-shot ability primarily depends on the transfer of knowledge from the
pre-training stage, which may be lost due to subsequent training. This effect is also known
as catastrophic forgetting. 2) Gradient calculation and evaluation are expansive due to the
massive size of LLMs. Therefore, our approach practically applies the inspiration from DVRL
to LLM fine-tuning by decoupling agent training from LLM training and using a more tractable
diversity metric as a proxy for instruction tuning performance. Additionally, we simplify the
learning paradigm by designing an MDP compatible with common RL algorithms, thus allowing
the direct application of more advanced algorithms with no modification, albeit with a minor
redundancy introduced by this strategy.

Subset Selection with Greedy Methods Another line of work in the NLP communities
adopts various greedy methods for subset selection. These approaches typically define selection
criteria by combining diversity and quality measures additively or multiplicatively, applying
them in iterative greedy algorithms. However, there is no consensus on how to evaluate the
quality of individual data points. Common approaches include ChatGPT ranking [11] and
LLM loss [12]. In its simplest form, [6] selects the best data point that is maximally dissimilar
to all selected data points in the remaining dataset. In particular, [12] leverages a theorem-
driven approach, known as the determinantal point process, and alternates between selecting
the best data point and adjusting the likelihood of being selected for the rest of the dataset.
The basic intuition is that a better data point is associated with a higher inclusion probability.
Although both works have demonstrated empirical success, the overarching problem is the poor
computational complexity: Given a IT dataset of size N , the former and the latter method
ranks all datum in O(N4) and O(N2) time.

The primary computation costs for the greedy methods come from the need for repeated
computation of the pair-wise distances and iteration through the dataset to find the best can-
didate. Our method accelerates selection by taking advantage of the online diversity algorithm,
which does not apply to the mentioned methods, and selecting data points in one iteration.
The most computation-heavy part of our method is training, but it is not explicitly tied to the
dataset size and well benefits from GPU acceleration. In our experimentation, we demonstrate
that our method achieves comparable or even better results while increasing the speed by 10×
as compared to greedy DPP used in [12].
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3 Background & Preliminaries

3.1 Dataset Assumptions

Before introducing our main approach, we first introduce the prerequisites on the datasets.
Though majorly intended for instruction-tuning (text) datasets, this framework has basic as-
sumptions and is compatible with common machine learning datasets. Generally, we suppose a
dataset D = {xi, yi}Ni=1 ∼ P , where x and y are commonly defined to be the inputs and targets
respectively, but we primarily focus on the inputs only. Without imposing particular restric-
tions, inputs x can adopt arbitrary forms, including images and texts. Instead, we assume a
feature transformation function f : χ → R

d that encodes x ∈ χ into high-dimensional vector
representation x̃ ∈ R

d. For example, an appropriate transformation for any common image
dataset is a pre-trained ResNet model [13] with the final layer removed. Finally, we consider
a diversity measure g : Rk×d → R that quantifies the spread of a finite set of feature vectors
X̃ = [x̃1, ...x̃k]

T . Common choices include the determinant or the trace of a covariance matrix
and the average Euclidean or Cosine distances.

3.2 Problem Definition

Formally, the problem of diversity-promoting subset selection can be formulated as a maxi-
mization problem under a cardinality constraint M :

max
D−

g(X̃f,D−)

s.t. |D−| = M ≤ |D|
D− ⊆ D

where X̃f,D− is the feature matrix of D− with the transformation function f . Finding the
solution D−∗ to the optimization problem is non-trivial because of its non-differentiability and
the combinatorial nature.

3.3 Online Diversity Calculation

A crucial ingredient of our method in achieving high efficiency is the effective usage of online
algorithms for diversity measurement. The diversity metrics of interest, including calculating
the covariance matrix and all-pair distances, involve computationally expensive operators. The
online estimation for both statistics shares the same idea: For an additional data point, the
algorithm 1) updates the mean estimate and 2) updates the statistics according to the temporal
difference. For covariance matrix, the update rule can be characterized as:

µt = µt−1 +
1

t
(xt − µt−1) ,

Σt = Σt−1 +
1

t

(
(xt − µt−1)(xt − µt−1)

⊤ − Σt−1

)
,

where µ1 = x1 and Σ1 = 0 for t ∈ {1, ...,M}. Notably, when a datum arrives, the algorithm
reduces the per-iteration time complexity from O(d2t) to O(d2) for re-evaluating the subset
diversity and from O(dt2) to O(dt) for mean distances.
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Figure 1: Overview for training and inferencing procedure. A single data point is fed into the
agent, which decides whether or not to include it in the subset. However, the subset itself is
not visible to the agent. The reinforcement learning signal guided by the marginal change in
the diversity metric is used to update the agent. During the inference stage, the agent assigns
a score for all data points. The top-k samples of the sorted data points are selected as the
maximally diverse subset.

3.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [14] is a performant policy gradient method based on
the Actor-Critic framework. Both policy and value networks are updated by taking a gradient
step to maximize a clipped surrogate objective:

L(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]

where the advantage is weighted by a probability ratio rt(θ) = πθ(at|st)
πθold

(at|st) . In practice, the

advantage Ât is obtained via Generalized Advantage Estimation:

Ât = σt + (γλ)σt+1 + ...+ (γλ)T−t+1σT−1

σt = rt + γV (st+1)− V (st)

for discount factor γ and the balance parameter λ in the range [0, 1]. The parameter λ balances
between estimation bias and variance by weighting the history of temporal-difference error.

4 Method

Our method solves subset selection with a deep RL algorithm, focusing on PPO, by converting
the optimization problem into a Markov decision process. The RL policy learns to maximize
the final diversity during training and ranks all data points by assigning a diversity score.
Figure 1 presents an overview of the method.

Training We define the state to be a single datum xt drawn from the remaining dataset
D−D−

t−1, the action space to be either include or exclude the datum xt, the transition function
to be P (st+1|st) ∼ Uniform(D − D−

t−1), and the reward to be the marginal change in the

diversity measure ∆t = g(X̃D−
t
) − g(X̃D−

t−1
) for D−

t = D−
t−1 ∪ xt if a =include. The MDP
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terminates whenever there is no data point left in the remaining dataset D = ∅ or the selected
subset reaches the cardinality constraint t = M = |D−|. The designed MDP has a discrete and
deterministic binary action space, and the state space contains finite vector representations,
making it readily compatible with common RL algorithms. The reward signal is dense, as a
non-zero value is returned whenever a new data point is included. Since the reward is the
marginal change, the un-discounted sum rewards is exactly the diversity measure of the final
subset D−. In practice, we use the introduced online algorithm to estimate the reward value
efficiently.

Inferencing For inference, inspired by DVRL [9], we adopt a distinct and more flexible
strategy to assign a diversity score calculated as the log inclusion probability P (a = include|s =
x). This is possible because the inclusion probability only depends on the current sample x
regardless of the selected subset D−. The diversity score serves as a relative measure of the x’s
impact on the diversity metric across all potential subsets s.t. x ̸∈ D−. With predicted scores,
the subset selection is possible for arbitrary size limits and is no longer restricted by M . This
is achieved by first sorting the data points according to their scores in decreasing order and
taking the top-k samples, where k is the desired subset size. Notably, minimizing the diversity
is possible by reversing the order of the sorted data points and then taking the top-k samples.

Impact on the Algorithm Due to the design of the MDP, the state representation poorly
reflects the current state of subset selection as the agent does not know D−

t when making a deci-
sion on xt. Therefore, we acknowledge that the usage of PPO algorithm introduces redundancy,
especially concerning the state value estimation: 1) the state representation provides no infor-
mation to predict the expected total reward V (st) (discounted diversity measure) accurately.
2) the generalized advantage estimation barely benefits from the history of temporal differences
σt. We empirically find that the learned values admit a normal distribution centered at 0, and
the effectiveness of maximizing the diversity remains the same even when setting λ = 0, where
At = rt − V for V ∼ N(0, σ).

Mechanism Analysis We argue that using At = rt provides sufficient signal for policy
learning by considering a distribution of subsets PD(D

−) similar in the Determinantal Point
Process theory [15]. Suppose L ∈ Rn×n be a positive semi-definite covariance matrix defined by
some kernel function, e.g. Radial Basis Function. DPP models subset selection as a Maximum
Posterior inference such that P (D−) ∝ det(LD−) for D− ∈ P(D) and D− ∼ PD, where the
determinant provides a measure of the diversity. In the case of MDP, we similarly define state
xt and subset D−

t as random variables that depend on the step variable t. Recall that the
advantage is equivalent to the reward At = r(xt|D−

t ) = g(D−
t ∪{xt})− g(D−

t ), if we ignore the
value estimation. For simplicity, we also re-define the reward to only account for the direction
of the impact:

r(xt|D−
t ) =

{
+1, if g(D−

t ∪ {xt}) ≥ g(D−
t )

−1, otherwise

During trajectory roll-out, the algorithm collects multiple samples of r(xt|D−
t ) for different D

−.
For batch updates, the aggregate advantage of a particular x is a point estimate of the expected
impact on the diversity measureED−

t
[r(xt|D−

t )]. Observe that the expected impact is equivalent
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Figure 2: Diversity measure for subsets selected by four methods w.r.t. increasing sizes. Our
method, denoted by RL, selects the most and the least diverse subset. Greedy DPP selects the
most diverse subset. The random baseline (red) is added as a reference.

to the probability that including x will increase the diversity after linear transformation:

ED− [r(xt|D−
t )] = 2ED− [1[g(D−

t ∪ {xt}) ≥ g(D−
t )]]− 1

= 2P (g(D−
t ∪ {xt}) ≥ g(D−

t )|xt)− 1

Therefore, optimizing the policy gradient is equivalent to encouraging the policy to include
samples xt, which will most likely promote subset diversity:

argmax
θ
Et[πθ(at|xt)At] = argmax

θ
Et[πθ(at|xt)P (g(D−

t ∪ {xt}) ≥ g(D−
t )|xt)]

5 Experiments

Though inspired by LLM fine-tuning, our method flexibly applies to general machine-learning
datasets. Because of the recent development trend of multimodal LLMs, we majorly evaluate
our method on two image datasets and one instruction-tuning dataset and compare its effec-
tiveness against Greedy DPP[16, 12]. Finally, as a proof-of-concept, we validate the impact of
diversity on instruction-tuned LLM’s zero-shot abilities.

5.1 Diversity Optimization

Implementation We experiment our method on FashionMNIST [17], CIFAR-10 [18], and
Alpaca [19]. Table 2 summarizes the definition of our MDP environments. We use the PPO
[14] to optimize the RL agents with a learning rate of 0.0003 and a batch size of 64 for 1e5 steps.
The size limit M is set to 20% of the total data size. After training, we used the agent to sort
the data points based on the predicted scores. We then take the top-k or bottom-k samples as
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FashionMNIST CIFAR-10 Alpaca

Greedy DPP 113 mins 81 mins 56 mins
(Our) DSS-RL 7 mins 5.5 mins 4 mins

Table 1: Run time comparison of greedy DPP and our method on various datasets. Both
algorithms are run on the same platform. Our method benefits from GPU acceleration.

Dataset Format Feature Extractor (f) Metric (g)
FashionMNIST 60k 282 gray-scale images Image Flattening Trace(Cov(·))
CIFAR-10 60k 322 colored images ResNet-18 Trace(Cov(·))
Alpaca 52k IT text paragraphs all-mpnet-base-v2 Mean Cos Distance

Table 2: Summary of Feature Extractors and Metrics for Various Datasets

the subset that maximizes or minimizes the diversity. We denote them as ”Maximize (RL)”
and ”Minimize (RL).”

Results For evaluation, we consider the mean cosine distance for all three datasets. Figure
2 illustrates the trend of the mean distances for subsets selected by our method, greedy DPP,
and the random baseline. Compared with greedy DPP, We observe that our method has a
competitive performance on CIFAR-10 and superior performance on both FashionMNIST and
Alpaca, whereas the RL method finds a more diverse subset across various sizes. Meanwhile,
our method also effectively finds the least diverse subsets, illustrated by the green curves. As
expected, all diversity curves approach the random baseline as the size increases. However,
the trend for ”Minimize (RL)” on FashionMNIST is not monotonic as the diversity decreases
from size 1% to 6%, while we anticipate it to increase. We list the total computation time to
rank 50% of the data in Table 1. Using the same platform, our method benefits from an A6000
GPU and is around 10 times more efficient than greedy DPP. Since the major computation
cost for our method occurs in training, it has an even greater advantage when ranking the full
datasets.

Effect of Training Steps To better understand how training time steps affect the diversity
of the selected subsets, we apply our method to the Alpaca dataset and train for 500,000
steps. We evaluate the agent for every 5,000 steps by plotting the total rewards in the training
environment (Figure 3 Left) and diversity curves w.r.t. to various subset sizes (Figure 3 Right).
We observe that the training reward steadily increases over all 500,000 steps. The rewards have
0 standard deviation as the agent takes an independent and deterministic action for every data
point. Figure 3 right demonstrates the impact of training steps on inference, where we notice
a strong diminishing return after 300,000 steps. Since our method beats greedy DPP after
100,000 training steps, this result shows that a stronger performance is possible with further
training. In practice, one would choose an appropriate total training step to balance efficiency
and performance, especially when a strong GPU is unavailable.

5.2 Effect on LLM Fine-tuning

To validate the dataset diversity’s effect on LLM fine-tuning, we utilize the trained agent to
select the 3,000 most or least diverse samples from the Alpaca dataset for LLM training. We
follow the zero-shot evaluation protocol as in [6] and evaluate the fine-tuned LLM on four
out-of-distribution benchmarks.

Implementation For training, we initialize a pre-trained LLM, Llama-2-7B [20] and train
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Figure 3: Impact of training steps on agent performance. Higher cosine distances are better.
Left: Total training rewards vs. training steps. Right: The diversity curves vs. training steps.
The diversity curves are generated by taking top-k samples of the full dataset with increasing
k. The color denotes the number of training steps.

MMLU ARC HellaSwag BoolQ AVG

Humanity Social Sci STEM Other Easy Challenge - - -

Full 34.3 44.0 37.0 50.2 74.5 48.6 72.9 82.1 55.4
Random 34.2 44.5 37.2 49.7 72.4 46.2 71.9 79.2 54.4
Max 34.4 45.2 37.2 50.0 70.0 45.7 71.8 77.8 54.0
Min 34.2 45.2 36.4 50.1 76.0 48.6 73.2 81.9 55.7

Table 3: Comparison of Llama-2-7B fine-tuned on different subsets on four standard bench-
marks in the zero-shot setting. The best scores are in bold.

it on four data splits: our Max subset, our Min subset, Random sample, and Full dataset.
Specifically, we train the LLM using the AdamW optimizer at a learning rate of 2e − 4, a
batch size of 128 for 3 epochs. We uses the Low Rank Adaption technique [21], with r = 128,
to decrease the memory footprint. All training sessions are completed within 10 minutes on
4xA100 GPUs.

Results The fine-tuned LLMs are evaluated on four benchmarks: MMLU [22], ARC [23],
HellaSwag [24], and BoolQ [25]. Respectively, they correspond to task types testing multidis-
ciplinary knowledge, reasoning, commonsense, and reading comprehension. Table 3 lists the
evaluation results. Surprisingly, despite previous evidence that zero-shot performance favors
diverse IT datasets [6, 5, 12], we observe that using the Max subset yields the worst perfor-
mance, while training on the Min subset achieves the best average score of 55.7, outperforming
both random baseline and full dataset training. The LLM train on the Min subset sets the
best scores on four of eight benchmark splits and performs competitively on the others except
for the STEM split in MMLU. We reason that the reversed trend may be due to the noise
in the Alpaca dataset. For example, the Clean-Alpaca project points out that the quality of
Alpaca’s training sequences varies, and some include factual errors, hallucination problems,
and corrupted outputs. As we ignore the data point’s quality, it is reasonable that the noisy
samples are considered ”novel” and thus preferred in the Max subset. Therefore, minimizing
the diversity functions as anomaly detection, the Min subset contributes to better performance
by including clean and consistent training data.
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To qualitatively evaluate the subsets, we show examples from the Min subset in Table 4.
We notice that most of the training paragraphs fall into the category of text summarization,
thus verifying that our method indeed finds the most semantically homogeneous (least diverse)
subset.

Instruction
Take the input and summarise it in 8 words.
Sum up the sentence using one or two words.
Select the sentence that best summarizes the following text.
Create a tagline that summarizes the idea of the product or service presented
in the sentence.

Table 4: Qualitative samples of instructions from our least diverse subset.

6 Conclusions

In this project, we propose a novel method to efficiently find the maximally diverse subset un-
der a size constraint by framing the optimization problem as a Markov Decision Process solv-
able with a standard reinforcement learning algorithm. Our comprehensive experimentations
on three machine learning datasets across different domains demonstrate that our approach
achieves comparable or superior performance while being 10x more computationally efficient
(Figure 2, Table 1) compared with the greedy DPP.

Moreover, our method allows flexibility in selecting either the most or least diverse subsets
during inference. Interestingly, contrary to our initial hypothesis, we found that the least di-
verse instruction-tuning dataset yielded the best performance for the pre-trained LLM, Llama-
2-7B (Table 3). This finding highlights that diversity alone may not be a sufficient metric for
developing a comprehensive data estimator.

7 Limitations & Future Works

Despite the advantageous speed, further improvement is possible by removing the redundant
value estimation network in policy gradient algorithms. Both empirical and theoretical analyses
show that the raw reward signal, marginal change in the diversity metric, is sufficient, and the
value estimation performs no better than random noise. Furthermore, while dataset diversity
has a significant impact, it may be mislead the noise and corrupted samples. This limitation
underscores the need for incorporating additional metrics that better reflect data quality, such
as relevance, representativeness, or alignment with task-specific objectives.

Moving forward, we aim to develop a more comprehensive framework for evaluating datasets.
This framework would integrate multiple quality metrics, such as a reward model from RLHF
[26], to provide a nuanced understanding of truthfulness and comprehensiveness. Additionally,
we propose designing an expanded state space that accounts for the diversity and interactions
of different data types, such as mathematical problems, summarization tasks, and question
answering.
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